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Abstract

This paper studies dynamic characteristics of a beam with continuously distributed spring-mass which may represent a
structure occupied by a crowd of people. Dividing the coupled system into several segments and considering the distributed
spring-mass and the beam in each segment being uniform, the equations of motion of the segment are established. The
transfer matrix method is applied to derive the eigenvalue equation of the coupled system. It is interesting to note from
the governing equations that the vibration mode shape of the uniformly distributed spring-mass is proportional to that
of the beam at the attached regions and can be discontinuous if the natural frequencies of the spring-masses in two adja-
cent segments are different. Parametric studies demonstrate that the natural frequencies of the coupled system appear in
groups. In a group of frequencies, all related modes have similar shapes. The number of natural frequencies in each group
depends on the number of segments having different natural frequencies. With the increase of group order, the largest nat-
ural frequency in a group monotonically approaches the natural frequency of corresponding order of the bare beam from
the upper side, whereas the others monotonically move towards those of the independent spring-mass systems from the
lower side. Numerical results show that the frequency coupling between the beam and the distributed spring-mass mainly
occurs in the low order of frequency groups, especially in the first group. In addition, vibratory characteristics of the cou-
pled system can be approximately represented by a series of discrete multi-degrees-of-freedom system. It also demonstrates
that a beam on Winkler elastic foundation and a beam with distributed solid mass are special cases of the proposed
solution.
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1. Introduction

It has been experimentally identified that a person or a crowd acts at least as a spring-mass-damper on a
structure when the person or the crowd is stationary, such as sitting or standing, where the interaction between
human and the structure needs to be considered (Ellis and Ji, 1997). This finding has led to further research of
human-structure interaction. The challenging and fascinating aspects of the study lie in that a slightly damped
structure system and a highly damped human body system are combined to form a new system (Ji and Ellis,
1999; Ji, 2003; Ellis and Ji, 1996). When a crowd of stationary people occupies a cantilever grandstand, a long-
span floor or a footbridge, the interaction between human and structure can be represented using either dis-
crete or continuous models. The simplest discrete model is a two degrees-of-freedom (TDOF) system in which
the crowd is modelled as a single degree-of-freedom (SDOF) system and the structure as another SDOF sys-
tem. The advantage of the model is that the high damping ratio of the crowd can be considered without too
much difficulty. On the other hand, it neglects the effect of all higher modes of the structure. The contribution
of the higher modes may not be significant, but this needs to be validated. The simplest continuous model is to
consider the structure as a continuous beam while the occupants are modelled as a continuously distributed
spring-mass on the beam. Hence, all modes of vibration of the human-beam system can be considered. For
such an engineering background, this paper investigates the dynamic characteristics of an Euler—Bernoulli
beam with continuously distributed spring-mass.

A number of papers studied free vibration of beams attached by discrete spring-masses or rigid masses. The
exact solutions for free vibration of shear beams, Euler—Bernoulli beams and Timoshenko beams with rigid or
elastic concentrated masses were reported (Li, 2000; Chen, 1963; Goel, 1973; Rossit and Laura, 2001a,b). Wu
and his co-workers (Wu et al., 1999; Wu and Chou, 1998, 1999; Chen and Wu, 2002; Wu and Chen, 2001)
developed an analytical-numerical method to study the free vibration of uniform or non-uniform Euler—
Bernoulli beams and Timoshenko beams with concentrated spring-masses. Low (2000, 2003) investigated
approximate estimations of natural frequencies of a beam carrying concentrated masses. The vibratory char-
acteristics of uniform or non-uniform beams carrying TDOF spring-mass systems were studied (Qiao et al.,
2002; Wu, 2002, 2004; Wu and Whittaker, 1999). Drexel and Ginsberg (2001) investigated the effect of modal
overlap and dissipation in a cantilevered beam attached by multiple spring-mass-damper systems. Chai et al.
(1995) studied the tension effect of clamped beams carrying a concentrated mass on the natural frequencies.
Chan and Zhang (1995) investigated the natural frequencies of a cantilever tube partially filled with liquid the-
oretically and experimentally. Chan et al. (1996) and Chan and Wang (1997) investigated the vibratory char-
acteristics of a simply supported Euler—Bernoulli beam and of a cantilevered Timoshenko beam with
distributed rigid mass, respectively.

In this paper, free vibration characteristics of a non-uniform beam with arbitrarily distributed spring-mass
are studied. Dividing the system into several segments and approximately considering all the parameters in
each segment being constant, the solution can be derived by using the transfer matrix method. The essence
of the coupled vibration of a beam and distributed spring-mass is studied in detail. It is found that the natural
frequencies of a beam with distributed spring-mass appear in groups and its vibratory characteristics can be
equivalently represented by a series of discrete spring-mass system. It also shows that a beam on Winkler elas-
tic foundation and a beam with distributed solid mass are the special cases of the proposed solution when the
mass and stiffness of the distributed spring-mass become infinity, respectively.

2. Governing differential equation

Consider a beam with a varying cross-section guaranteeing the continuity of the neutral axis of the beam
and attached by continuously distributed spring-mass, as shown in Fig. 1(a). Firstly, a segment with the length
of /; is isolated from the system, as shown in Fig. 1(b), and all parameters of the segment are assumed to be
constants. Separating the attached spring-mass from the beam segment and remaining the actions of the
spring-mass on the beam, the governing differential equations of the beam segment and the distributed
spring-mass on the segment are given as follows, respectively:



D. Zhou, T. Ji | International Journal of Solids and Structures 43 (2006) 5555-5569 5557

y m(x)

k(%)
° I¥//|'

PAX), EI(%)

» X

(@
YA m
222
ki
O P Xi
li
PA;, Elj

(b)

Fig. 1. (a) A beam with distributed spring-mass, and (b) a segment taken from the system and approximately considered to be uniform.
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where y; = y{x;t) is the displacement of the beam, EI; is the flexural stiffness and pA; is the mass per unit
length of the ith beam segment. z; = z,(x;, f) is the displacement of the distributed mass m;, k; is the stiffness
of the distributed spring on the ith segment. It should be mentioned that for clamped thin beams carrying large
distributed mass the tension effect should be considered in the vibration analysis (Chai et al., 1995). This sit-
uation is not included in the present study.

When the beam-spring-mass system experiences free vibration, the solutions of the above equations have
the following form:

Vi(xi, 1) = Yi(x;)e ™, zi(x;, 1) = Zi(x;)e 3, (3)

where o is the natural frequency of the coupled system and j = v —1. Y(x;) and Z,x;) are the vibration modes
of the ith segment of the beam and the spring-mass on the segment, respectively. Substituting Eq. (3) into Egs.
(1) and (2) gives

d'y; )
EI; Ao — pA;’Y; + k(Y —Z;) =0, @
1
Zi(x;)) = ———= Y(x;), 5

where @, = +/k;/m; is the natural frequency of the independent spring-mass system on the ith beam segment.
Eq. (5) indicates that the beam and the spring-mass have the same mode shapes on a segment, as
1/[1 — (w/@;)’] is a constant. However, the mode shapes of the spring-masses on two adjacent segments, such
as the ith and the (i + 1)th segments, can be discontinuous if @; and @, are different. Substituting Eq. (5) into
Eq. (4) gives
&m_ﬁ
et "

1+“f)4m—a 0<é <1, (6)

1 — (w/®;

where & = x;/1; is the dimensionless coordinate, y; = m;/(pA,) is the ratio of the spring-mass to the beam mass
per unit length and ),,.2 = wlf\/ pA;/(EI) is the dimensionless natural frequency of the system.

Eq. (6) is the governing differential equation of free vibration for the ith segment of the beam and distrib-
uted spring-mass system.
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3. Solution

The solution of Eq. (6) depends on the sign of the coefficient 1 + 1,/[1 — (w/@;)’] according to the theory of
ordinary differential equation, which is shown in Fig. 2. To simplify the expression of the solution, the follow-
ing parameter is introduced:

H; _
1= (o))

There are three possible solutions for Eq. (6):

0(,':/1,‘4 1+ (7)

When (w/@®;)° > 1+, or (w/d;)* < 1
Yi(&) = cu sin(o;€;) + cpcos(0i:E;) + ¢ sinh(o;:&;) + ¢4 cosh (o). (8)
When 1 < (/@,)* < 1+ g
Yi(&) = cn sin(o;&;) sinh(a&;) 4 ¢ cos(o&;) sinh(o; &) + ¢i3 sin(o;&;) cosh(ogE;) + i cos(oE;) cosh (o &;).
9)
When (0/®;)" =1+ u
Yi(&) = e + cnéi + el + cul), (10)
where ¢;; (= 1,2,3,4) are the unknown constants, which can be determined using boundary conditions. When
w; =0, Eq. (8) still holds for a bare beam segment.
The relations between displacement Y;, rotational angle 0, = dY;/dx,, bending moment M, = EId%Y; /dx?

and shear force V; = EI,d*Y,; /dx} at the two ends (x; =0 and x; = /;) of the ith segment can be expressed in
a matrix form as follows:

{F}) = [TI{F} (11)

where the superscripts R and L mean the right end and left end of the beam-spring-mass segment, respectively,
and

{F}F =[7:(1) 0.(1) M(1) vi(1)]",

{F}i =[Y:(0) 6,00) M,0) Vi(0)]", (12)
fh th By fy

R (13

tit 1 tilZ t43 tﬁt4

Fig. 2. The sign of the coefficient 1+ p,/[1 — (/;)*].
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When (w/@;)” > 14y, or (w/d;)” < 1
£, = (coso; + cosh o) /2, i, = Li(sino; + sinh o) / (204;),
ty = I}(—coso +coshoy)/(2EL02),  t, = I}(—sino, + sinhay)/(2ELe),
ty, = o;(—sino,; + sinh o) /(21,), th, = (coso; + cosh ;) /2,
tyy = li(sino; + sinh o) / (2EL ), thy = I’(— cos o + cosh o) /(2EI02),
ti, = ElLo?(—cosa; + cosh o) /(217), tt, = ElLo;(— sino; + sinh o) /(21,),
ti; = (coso; + cosha;) /2, i, = Li(sino; + sinh o) / (204),
fy, = ELi}(sino; + sinh o) /(21)), £, = EL,o?(— coso; + cosh ;) /(217),

ty; = o;(—sino,; + sinh o) /(21,), t,, = (coso; + cosha;) /2. (14)
When 1 < (w/@,)* < 1+ p, there are

#1, = cosa; cosh a;, t1, = Ii(sina; cosh &; + cos ; sinh ;) / (2a;),

t., = I} sing, sinh &,/ (2EL#?), t., = I)(sin & cosh & — cos & sinh &;) / (4EL%}),

ty, = %;(—sin & cosh&; + cos & sinh &) /1;, th, = cos&; cosh a;,

tyy = I;(cos &, sinh &; + sin & cosh ;) / (2EL,%), th, = [ sing, sinh &,/ (2EL&?),

i, = —2EI 2 sing,;sinha, /7, £, = EL,a;(—sina; coshd; + cos & sinh &) /1,

ti3 = cos &; cosh a;, ti, = I;(cos & sinh & + sin & cosh ;) /(2a;),

f,, = —2EIa (cos & sinh o, + sina cosha;) /1, £, = —2ELa’ sina, sinh o,/ 17,

t}; = %;(—sin & cosh&; + cos & sinh ;) /1;, t,, = cosd; cosha, (15)

where @; = oc,-/\/z.
When (w/®;)" = 1 + p, it gives
ty=1, fy=1, fy==0/QEL), f,=1[L/(6EL), t, =0, 6,=1, & =1L/(El),
thy=1}/QEL), 1t =10,=0, ty=1, by=1, fy=1l=1;=0, =1 (16)
The present solutions are applicable for the following special cases:
e When the mass density of the distributed spring-mass on the ith segment becomes infinity i.e., y; = oo, it
means the ith segment of the beam on Winkler elastic foundation.

e When the stiffness of the distributed spring-mass on the ith segment approaches infinity, it represents a dis-
tributed rigid mass on the segment of the beam.

4. Transfer matrix

The displacements and forces on the right end of the ith segment should be equal to those on the left end of
the (i + 1)th segment, i.e.,

{FYi, = {F) (17)
Substituting Eq. (11) into the above equation gives
{Fyi, = [TIAFY, (18)

where [T7; is called as the transfer matrix. If the structure is divided into 7 segments, the following successive
formula can be obtained:

{FYy; = [T, [T [T AR (19)



5560 D. Zhou, T. Ji | International Journal of Solids and Structures 43 (2006) 5555-5569

From Eq. (11), one has

{Fy; = T1AF}. (20)

Substituting Eq. (19) into Eq. (20) gives

{FY; = [TLT) 0 [T],s - [TLAF Y = [THF Y, (21)
where [7] is a 4 x 4 matrix as follows:

n ty hs hs
b tn ty by
[T] = [TMTL—l[T][—z"'[T]l = . (22)
I3 In B Iy
ty, tyn t43 Iy
Considering the boundary conditions of the two ends of the beam, a 2 X 2 homogeneous matrix equation can
be obtained from Eq. (22). The determinant of the coefficient matrix should to zero, which gives the eigenvalue
equation dependent on the boundary conditions of the beam.

For a simply supported (S-S) beam, #t34 — t1at3n = 0. (23)
For a clamped-clamped (C-C) beam, #3t24 — f1at23 = 0. (24)
For a simply supported—clamped (S—-C) beam, #2tp4 — t1at2 = 0. (25)
For a cantilevered (F-C) beam, #1t» — f12t5 = 0. (26)
For a free—free (F-F) beam, f31t4 — t41t3 = 0. (27)

The back substitution of eigenvalues obtained from Eqgs. (23)—(27) gives the corresponding mode shapes.

5. Basic characteristics of solutions

Eq. (5) shows that the mode of the uniformly distributed spring-mass is proportional to the mode of the
beam at the attached regions. The amplitude ratio of the spring-mass to the beam is equal to
1/[1 — (w/@;)’]. This means that in a segment if the natural frequency of the coupled system is smaller than
that of the independent spring-mass, the movements of the beam and the spring-mass are in the same direc-
tion. However, if the natural frequency of the coupled system is larger than that of the independent spring-
mass, the ratio becomes negative and the movements of the beam and the spring-mass are in the opposite
directions. The closer the natural frequency of the coupled system to that of the independent spring-mass,
the larger the absolute value of the amplitude ratio. Moreover, if the natural frequencies of the independent
spring-masses on two adjacent segments are different, the mode shape of the spring-mass on two adjacent seg-
ments could be discontinuous because of different amplitude ratios.

It can be noted from Fig. 2 that when (w/@®;)* > 1 + g, or (w/@;)* < 1, the form of the solution is the same
as that of the solution of free vibration of a bare beam, as seen in Eq. (8). When 1 < (w/@®,)* < 1 4 y,, the
form of the solution is the same as that of the homogeneous solution of a static beam on elastic foundation,
as seen in Eq. (9). When (w/ cb,-)2 =1+ p;, the solution is the homogeneous solution of a static beam, as seen in
Eq. (10). In this case the inertia force of the distributed mass just counteracts the inertia force of the beam.

A uniform beam with uniformly distributed spring-mass along its full length is now considered. There is
only one segment and for simplicity the subscript i = 1 is omitted. For this special case, some general charac-
teristics of the beam and spring-mass system can be deduced from Egs. (5) and (8) that

e The mode shapes of the beam Y(¢) and the spring-mass Z(¢) are identical.

e The parameters ¢; (j = 1,2,3,4) and o in Eq. (8) are uniquely determined by the four boundary conditions of
the beam as shown in Eqs. (23)~(27), which are independent of the spring-mass on the beam. Therefore o is
the dimensionless natural frequency of the bare beam and can be expressed as wy,/*+/pA4/EI where wy, is the
natural frequency of the bare beam.
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e Substituting ¢; (j = 1,2,3,4) and « into Eq. (8) gives the mode shape Y(&) which is valid for both bare beam
and the beam with spring-mass. In other words, the mode shapes of the bare beam and the coupled beam-
spring-mass system are identical.

e Substituting o into Eq. (7) leads to the solution of the natural frequencies of the beam and spring-mass
system.

In this case one natural frequency of the bare beam corresponds to a pair of natural frequencies of the cou-
pled system, which can be obtained by solving Eq. (7) as follows:

1 _ _ _
o}, = 5{(1 + W)@ + oy, — \/[(1 + W)@+ of)]’ — 4wﬁjw2},

(28)
1

w3 = 5{(1 + W@’ + o, + \/[(1 + W@ + o) — 4w§ja)2}, j=1,2,3,...0.
Eq. (28) indicates that the jth pair of natural frequencies of the coupled system corresponds to the jth mode of

vibration of the bare beam. From Eq. (28), the following relationships can be easily demonstrated, as given by
Ellis and Ji (1997)

W10y = W@, 1 < (Wy, D) < W2, j=1,2,3,...00. (29)

Eq. (29) indicates that in the jth pair of natural frequencies of the coupled system, the first frequency is always
lower than the natural frequency of the independent spring-mass and the jth natural frequency of the bare
beam; the second is always higher than the two natural frequencies of the independent spring-mass and the
bare beam.

It can be noted that Eq. (28) is actually the solution of a discrete TDOF system, as shown in Fig. 3, with the
following parameters:

M,=ml, M,=pAl, K,=kl, Ky =Muw;, (30)

From the above analysis, it can be concluded that for a uniform beam with uniformly distributed spring-mass
along its length, its vibration characteristics can be exactly represented by a series of discrete TDOF systems. It
can be seen from Eq. (30) and Fig. 3 that the two lumped masses, M, and M, and the stiffness of the upper
mass, K, are constants. However, the stiffness K, is proportional to the square of the natural frequency w,, of
the bare beam. With the increase of the mode order, w;; monotonically increases. This means that the stiffness
K;,; also monotonically increases. Eq. (28) can be rewritten as follows:

2 =2 -2 : 2
i w w
o}, % I+ —+1— | [A+p)—+1| —4—3,
@by bj bj
(31)
w?. 2 ) 2 =2
3, % (It 1| |+ w1 -4
bj bj bj
Ma
=
Mpb
Kbj

Fig. 3. The equivalent TDOF system of a uniform beam with uniformly distributed spring-mass along its full length.
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As @? is a constant, d)z/wlz)j is a small value when j is large. Thus, the following approximation can be
obtained:

2

log * log
I+uw)—=+1| —4d—5=I+@u-1)—. (32)

wp; wp; [ars

Substituting the above equation into Eq. (31) gives
w1~ O, W2; = Wy; (33)

Eq. (33) indicates that the first natural frequency of the TDOF system is close to that of the independent
spring-mass and the second is close to that of corresponding order of the bare beam when j increases. This
demonstrates that

e For a high order natural frequency of the bare beam, the upper mass M, and the lower mass M), are vibrat-
ing independently at their own natural frequencies. In other words, there is little coupling between the free
vibrations of the two SDOF system.

* As wj; < @ and w; = @ for a large j, w,; gradually and monotonically approaches @ from the lower side
with the increase of the order j of the frequency pair.

® As wy; > wp; and wy; = wy; for a large j, w,; gradually and monotonically approaches w;; from the upper
side with the increase of the order j of the frequency pair.

e The coupled vibration of a beam and uniformly distributed spring-mass mainly occurs in the low order of
frequency pairs, especially in the first pair of frequencies.

6. Parametric studies

In the following study, a uniform beam with up to three segments of uniformly distributed spring-mass, as
shown in Fig. 4, will be investigated in detail. The mass and stiffness of the spring-mass are constants in each
segment, but vary from one segment to other. Three kinds of boundary condition are considered: the two ends
are clamped (C-C), the two ends are simply supported (S-S) and one end is free and the other clamped (F-C).
The following dimensionless parameters are used:

n =1L/l Bi=kI*)(ED), w=m/(pd),  (i=1,23) (34)
The coupled natural frequencies would be obtained by solving Egs. (23)—(27).

6.1. Uniformly distributed spring-mass on one segment

6.1.1. Coupled natural frequencies

A uniform cantilevered beam (free at the left end and clamped at the right end) is first considered with partly
uniformly distributed spring-mass starting from its free end. Thus, 1, = u, = ff» =53 = 3 = /3 =0. Three
length ratios, n; = 0.25, 0.5 and 1.0, are considered. Namely, the spring-mass occupies the first quarter, the first
half and the full of the span of the beam, respectively. Assume that the other two parameters in Eq. (34) are
f1 =060 and p; = 5.0. The eigenvalues can be obtained by solving Eq. (26). As the same as the beam with fully

I3

1 l1 Sle I2
2|1€

LTSS S TS ééi%

Fig. 4. A uniform beam with three segments of uniformly distributed spring-mass.
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Table 1
The pairs of dimensionless natural frequencies 4> = w/*\/pA /EI for a cantilevered beam with a part of uniformly distributed spring-mass
from its free end when f; = 60 and p; =5

Order of pairs Spring-mass 72 Bare beam 7° n =0.25 n =0.5 n=1.0

First Second First Second First Second
1 3.46410 3.51602 1.52178 7.89247 1.36617 8.90074 1.34042 9.08656
2 22.0345 3.43897 22.4493 3.34382 22.7998 3.26403 23.3851
3 61.6972 3.46344 61.8128 3.45624 61.9385 3.43704 62.1831
4 120.902 3.46400 120913 3.46273 121.026 3.45701 121.150
5 199.860 3.46407 199.901 3.46371 199.935 3.46150 200.010
6 298.556 3.46409 298.578 3.46395 298.606 3.46294 298.656
9] 00 3.46410 0 3.46410 00 3.46410 9]

uniformly distributed spring-mass, the dimensionless coupled natural frequencies can be classified into two
queues, as given in Table 1. The mode shapes of the beam, corresponding to the first two pairs of natural fre-
quencies, are given in Figs. 5 and 6, respectively. It can be observed from Table 1 and Figs. 5 and 6 that

e The coupled natural frequencies appear in pairs. Each pair of frequencies has two mode shapes which are
similar to that of the bare beam (when n; = 1, the mode shapes of the coupled system are the same as those
of the bare beam).

e The first natural frequency in a pair gradually approaches that of the independent spring-mass from the
lower side while the second gradually approaches the natural frequencies of the bare beam from the upper
side as the order of frequency pair increases.

e The frequency coupling between spring-mass and beam mainly appears in the first pair of natural frequen-
cies. As the order of frequency pairs increases, the degree of the frequency coupling between the beam and
the spring-mass decreases quickly.

6.1.2. Effect of the distribution of spring-mass

Table 2 gives the first four pairs of dimensionless natural frequencies for S-S and C-C beams with uniform
spring-mass symmetrically distributed about the midpoint of the beam when f, = 500 and p, = 5.0. In such a
case, 11 =13 and f; = p; = B3 = w3 = 0. It is seen from Table 2 that, which enhances the observations in the
last subsection:

0.8

0.6+ .5,

0.2': v ‘t)i.

X/

Fig. 5. The modes corresponding to the first pair of natural frequencies for a cantilevered beam (F-C) with a part of uniformly distributed
mass — the first mode, --- the second mode, (O) 7, = 0.25, (A) 1, =0.5, (X) 7, = 1.0 and bear beam.
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0.8 1

0.6 1

0.4 1

0.2 1

D
0.2
0.4
0.6

-0.8 1

x/l

Fig. 6. The modes corresponding to the second pair of natural frequencies for a cantilevered beam (F-C) with a part of uniformly

distributed mass — the first mode, - - - the second mode, (CJ) 1, = 0.25, (A) 1, = 0.5, (X) 1, = 1.0 and the bear beam.

Table 2

The first four pairs of dimensionless natural frequencies 2*> = w/*/pA/EI for S-S and C-C beams with uniform spring-mass
symmetrically and partly distributed on the midpoint of the beam when f, = 500 and u, = 5.0

Order of pairs S-S beam C-C beam

First Second Ist x 2nd First Second Ist x 2nd
Independent spring-mass 7% and bear beam y°
1 10 (dimensionless 9.86960 98.696 10 (dimensionless 22.3733 223.73

frequency of frequency of

spring-mass) spring-mass)
2 39.4784 394.78 61.6728 616.73
3 88.8264 888.26 120.903 1209.0
4 157.914 1579.1 199.859 1998.6
ny = 04, n = 02, nz = 0.4
1 5.16059 18.9277 97.678 8.01623 27.7719 222.63
2 9.89679 39.8042 393.93 9.93279 61.9929 615.76
3 9.99465 89.6993 896.51 9.99528 121.471 1214.1
4 9.99911 158.157 1581.4 9.99916 200.082 2000.7
111:0.3, 1’]2:0.4, 113:0.3
1 4.28070 22.8853 97.965 7.23428 30.8536 223.20
2 9.47629 41.4676 392.96 9.69560 63.4528 615.21
3 9.94460 89.8115 893.14 9.95610 121.557 1210.2
4 9.98857 158.672 1584.9 9.98985 200.410 2002.1
n;=02,1,=06,n;=02
1 3.92073 25.1297 98.527 6.95551 32.1582 223.68
2 8.98464 43.8484 393.96 9.47398 65.0584 616.36
3 9.83190 90.3497 888.31 9.88338 122.272 1208.5
4 9.95724 158.749 1580.7 9.96534 200.546 1998.5
n;=0.1,n,=08, n3=0.1
1 3.79440 26.0095 98.690 6.89721 32.4381 223.73
2 8.70053 45.3696 394.74 9.39335 65.6554 616.72
3 9.72213 91.3563 888.18 9.83667 122.909 1209.0
4 9.91528 159.254 1579.0 9.94134 201.034 1998.5
7[1=0.0, 7]2=1.0, 7]320.0
1 3.77608 26.1371 98.696 6.89461 32.4504 223.73
2 8.64842 45.6481 394.78 9.38822 65.6917 616.73
3 9.69397 91.6306 888.26 9.83216 122.967 1209.0
4 9.90085 159.495 1579.1 9.93784 201.110 1998.6
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e The products of pairs of natural frequencies of the system are close (or equal) to that of the natural frequen-
cies of the bare beam and the independent spring-masses for all cases. This is just the unique property of a
TDOF system, as given in Eq. (29).

e With the increase of the occupation of the spring-mass on the beam, the first natural frequency in a pair
monotonically decreases and the second monotonically increases, i.e., the more the occupation of the
spring-mass on the beam, the stronger the frequency coupling.

e The free vibration of the coupled system can be approximately simulated by a series of TDOF systems.

6.1.3. Effect of stiffness ratio and mass ratio

Table 3 provides the results showing the effect of the structural parameters on the first pair of natural fre-
quencies for a uniform beam with partly uniformly distributed mass for three types of boundary conditions. In
this case, fi; = 1y = 3 = uz = 0. Three length ratios and eight groups of spring-mass parameters (mass ratio
and stiffness ratio of the spring-mass to the beam) are considered. It is shown in Table 3 that

e With the increase of the occupation of the spring-mass on the beam, the first natural frequency in a pair
monotonically decreases and the second monotonically increases, as the same as observed in Table 2.

¢ Increasing the stiffness ratio will result in the increase of both natural frequencies in a pair. However,
increasing the mass ratio will result in the decrease of both frequencies.

¢ Proportionally increasing the mass ratio and the stiffness ratio (i.e., the natural frequency of the indepen-
dent spring-mass remains constant) will result in the decrease of the first natural frequency and the increase
of the second natural frequency in the pair. In other words, this enlarges the frequency coupling of the
spring-mass and the beam, vice versa.

e The closer the natural frequency of a bare beam to that of the independent spring-mass, the stronger the
frequency coupling between the beam and the spring-mass.

Table 3

The first pair of dimensionless natural frequencies 2= wlz\/;)m for beams with partly uniformly distributed spring-mass

Parameters S-S Cc-C F-C

N, N2 U, P First Second First Second First Second

0.0, 1.0 1,5 2.17808 10.1324 2.22487 22.4859 1.79747 4.37395
1, 10 2.99733 10.4127 3.13054 22.6001 2.10358 5.28558
1, 50 5.37623 12.9810 6.71226 23.5693 2.40844 10.3229
1, 100 6.12164 16.1225 8.98676 24.8958 2.44751 14.3657
5,25 1.98616 11.1114 2.18174 22.9304 1.23011 6.39134
5, 50 2.54024 12.2864 3.01274 23.4838 1.32316 8.40312
5, 250 3.55791 19.6151 5.70876 27.7123 1.41122 17.6173
5, 500 3.77608 26.1371 6.89461 32.4504 1.42320 24.7050

0.2, 0.6 1,5 2.18347 10.1072 2.22526 22.2819 2.00547 3.91267
1, 10 3.01202 10.3616 3.13164 22.5921 2.46661 4.49006
1, 50 5.47269 12.7500 6.72381 23.5282 2.88740 8.44332
1, 100 6.26057 15.7594 9.01616 24.8134 2.93013 11.5485
5,25 2.00656 10.9976 2.18357 22.9109 1.57025 4.95842
5, 50 2.58388 12.0769 3.01761 23.4453 1.76786 6.16863
5,250 3.67977 18.9495 5.74306 27.5434 1.96584 11.5503
5, 500 3.92073 25.1297 6.95551 32.1582 1.99296 15.0505

0.4,0.2 1,5 2.21282 9.97229 2.23060 22.4370 2.16477 3.62485
1, 10 3.09422 10.0847 3.14672 22.4817 2.84565 3.89217
1, 50 6.14018 11.3543 6.88889 22.9537 3.31414 7.35192
1, 100 7.29386 13.5036 9.45784 23.6326 3.33710 10.1348
5,25 2.12699 10.3705 2.20913 22.6406 1.95869 3.97581
5, 50 2.86417 10.8858 3.08677 22.9094 2.38184 4.57964
5, 250 4.67212 14.8610 6.29080 25.0866 2.78452 8.12615

5, 500 5.16059 18.9277 8.01623 27.7719 2.82880 10.5329
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6.2. Uniformly distributed spring-mass on several segments

To extend the studies in the last subsection, we consider the spring-mass to be distributed over two, three or
more parts of the span. The mass density and the stiffness of the distributed spring-mass are constants in each
segment but vary from segment to segment.

6.2.1. Different uniformly distributed spring-masses on two segments

Consider a uniform cantilevered beam (free at the left end) with two segments of distributed spring-mass
over the span of the beam. In such a case, 73 =0 and 3 = u3 = 0. The spring-masses have the parameters
B1 = ki[*/(EI) = 60 and py = my/pA = 5 on the first segment and f> = 20 and u, = 5 on the second segment.
Two sets of distribution length, (17; = 0.25, 1, =0.75) and (1, = n, = 0.5), are considered. The calculated re-
sults show that the coupled natural frequencies can still be clarified into groups and there are three natural
frequencies in each group. The first six groups of dimensionless natural frequencies are given in Table 4
and the mode shapes corresponding to the first group of natural frequencies are shown in Fig. 7. It can be
seen from Table 4 and Fig. 7 that

e The coupled natural frequencies appear in groups. The mode shapes corresponding to the first group of
natural frequencies are similar to the first mode of the bare beam and the modes corresponding to the sec-
ond group of natural frequencies are similar to the second mode of the bare beam, and so on.

e The frequency coupling between the spring-mass and the beam mainly appear in the first group of natural
frequencies. From the second group or higher, the first two natural frequencies in the groups gradually
approach those of the independent spring-mass systems from the lower side while the third natural fre-
quency in the groups gradually approaches those of the bare beam from the upper side, as the order of
vibration mode increases.

e The free vibration of the coupled system can be approximately represented by a series of three degrees-of-
freedom systems, where two independent SDOF spring-masses systems are placed in parallel on the SDOF
structure system as shown in Fig. 8.

6.2.2. Different uniformly distributed spring-masses on three or more segments

A uniform simply—simply supported beam with three segments of uniformly distributed spring-mass is
investigated. The spring-mass occupies the full length of the beam and the lengths of the three segments
are the same. The spring-masses have the parameters f; = k,/*/(EI) = 500 and p; = m;/pA = 2.5 on the first
segment, f, = 500 and w, = 5 on the second, 3 = 500 and p3 = 10 on the third. The calculated results show
once again that the coupled natural frequencies can be grouped and each group has four natural frequencies in
the studied case. The first six groups of dimensionless natural frequency are given in Table 5. It can be noted
from the table that with the increase of the group order, the first three natural frequencies in a group are,
respectively, close to those of the three different distributed spring-mass systems and the fourth is close to that

Table 4
The groups of dimensionless natural frequencies 4> = w/*\/pA/EI for a cantilevered beam (F-C) with two segments of uniformly
distributed masses when f; =60, f/, =20, uy =, =5

Order of groups Spring-mass 7 Bare beam 7° n =0.25, 1, =0.75 n =0.5 =05

First Second Third First Second Third
1 2 3.51602 1.27595 2.25441 8.28170 1.32729 2.02667 8.95941
2 3.46410 22.0345 1.98562 3.44016 22.7553 1.99623 3.34652 22.9937
3 61.6972 1.99830 3.46344 61.9361 1.99964 3.45628 62.0197
4 120.902 1.99956 3.46400 121.032 1.99991 3.46273 121.067
5 199.860 1.99984 3.46408 199.937 1.99997 3.46371 199.960
6 298.556 1.99993 3.46409 298.604 1.99999 3.46395 298.623
00 00 2 3.46410 00 2 3.46410 00
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Fig. 7. The modes corresponding to the first group of natural frequencies for a uniform cantilevered beam (F-C) with two segments of
uniformly distributed mass (f; = 60, ; = 0.25, f, =20, 1, =0.75, u; = u, = 5), (O) the first mode, (A) the second mode, (X) the third

mode, ([J) the bare beam.
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Fig. 8. The approximately equivalent model of a uniform beam with two segments of uniformly distributed spring-mass.

Table 5

The groups of dimensionless natural frequencies > = wi*/pA/EI for a simply supported beam with three segments of uniformly
distributed masses when f8; = B, = B3 =500, p; =2.5, o =5, 3 =10, ny = =3 =1/3

Order of groups Spring-mass 7 Bare beam 7> Dimensionless frequencies /2 = wi*+/pA JEI

First Second Third Fourth
1 7.07107 9.86960 3.55615 7.38182 12.4735 26.3509
2 10 39.4784 6.96491 9.67852 14.0360 45.7136
3 14.1421 88.8264 7.06222 9.96957 14.1276 91.6363
4 157914 7.06904 9.99408 14.1385 159.496
5 246.740 7.07038 9.99823 14.1408 247.753
6 355.306 7.07077 9.99931 14.1416 356.009
00 00 7.07107 10 14.1421 00

of the bare beam. The dynamic characteristics are equivalent to a discrete four degrees of freedom system in
which the three SDOF systems formed by the spring-masses on the three segments act in parallel on the SDOF

system converted from the beam.
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Fig. 9. The approximately equivalent model of a beam with n segments of uniformly distributed spring-mass.

Based on the above analysis, it is a physical deduction that if n segments of uniformly distributed spring-
mass with different natural frequencies are applied on a beam, the vibration of the coupled spring-mass and
beam system can be approximately represented by a series of n + 1 DOF systems, as shown in Fig. 9, in which
n SDOF spring-mass systems act in parallel on the SDOF structure system. The conclusions from the forego-
ing analysis for beams with one, two and three segments of uniformly distributed spring-mass still hold for the
general case.

7. Conclusions

This paper provides an exact analytical solution to investigate the characteristics of free vibration of a beam
and distributed spring-mass system. The spring-mass acts over parts of the span of the beam and has the con-
stant mass and stiffness on a segment but may vary from segment to segment. This model represents a struc-
ture occupied by a crowd of people. The study of the combined beam and distributed spring-mass system
allows to examining the relationship between the continuous model and the corresponding discrete models,
and assessing the effect of higher order modes of free vibration.

The main conclusions obtained are summarised as follows:

1. In each segment, the mode shape of uniformly distributed spring-mass is the same as that of the beam.
However, the mode shape of the spring-mass can be discontinuous between two adjacent segments if the
natural frequencies of the spring-masses on the two segments are different.

2. In a segment, when the natural frequency of the coupled system is smaller than that of the spring-mass, the
motions of the spring-mass and the beam are in the same direction; when the natural frequency of the cou-
pled system is larger than that of the spring-mass, the motions of the spring-mass and the beam are in the
opposite directions.

3. A beam attached by n segments of distributed spring-mass with different » frequencies can be approxi-
mately represented by a series of n + 1 DOF systems. The n discrete spring-masses representing the distrib-
uted spring-masses connect in parallel to the base spring-mass representing the beam. This provides a
theoretical basis for converting a continuous system with distributed spring-mass into several discrete sys-
tems. This conclusion is useful for developing simplified methods and studying human-structure interaction
in engineering practice.

4. The coupled natural frequencies appear in groups. The number of frequencies in each group is equal to
n + 1, if n segments of uniformly distributed spring-mass with different natural frequencies act on the beam.
With the increase of the group order, the first n natural frequencies in a group approach those of the inde-
pendent spring-masses from the lower side and the other approaches that of the bare beam from the upper
side.

5. The degree of frequency coupling between a beam and distributed spring-mass is dependent not only on the
structural parameters, but also on the order of natural frequencies. The coupled free vibration mainly
occurs in the low order of natural frequency groups, especially in the first group of natural frequencies.
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6. The solution of a beam and distributed spring-mass system can be applicable to some other problems, such
as a beam on Winkler elastic foundation and a beam with distributed rigid mass.
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